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Abstract—The planning of search paths of multiple unmanned
undersea vehicles is complicated by taking into consideration
the effects that potential cross-vehicle collaboration may have
on their performance. Such collaboration is expected to have
the effects of increasing the quality and accuracy of search over
that which is obtainable from independent search paths. These
problems are important in the undersea domain, where limited
communications and uncertain performance characterizations
provide a challenge to conduct meaningful search operations in a
reasonable amount of time. In this paper, we develop a modeling
framework that accounts for the effects of collaborating searchers
in a spatially variable undersea environment. The impact of this
modeling framework on search plan generation and evaluation
is then illustrated using simulation examples.

I. INTRODUCTION

The development of improved methods for performing a
search for hidden objects has a long history, going back to
the early work of Koopman [1] and others in the 1940s. The
early work focused on problems of finding single randomly
placed objects in a region using random search patterns. Over
time, the scope of problems studied advanced to examining
structured ladder search patterns [2] and optimal spatial al-
locations of search effort [3]. Unfortunately, most of these
traditional approaches consider the search for objects that
both (a) are positioned according to a uniform distribution
over the search region, and (b) are found by a single type of
sensor. However, in many undersea applications, searches are
conducted for objects that present themselves in a manner that
is best suited to being found by one of many available sensors.
For instance, the ideal sensor for finding a bottomed object is
often very different from the ideal sensor for finding an object
suspended in the water column. Because of this, it is desirable
to search with sensors tailored to the object of interest. When
there exists a mixture of objects, there is expected benefit
to having multiple searchers examine the region, each with
a sensor tuned to optimally finding a particular one of the
objects. Since each sensor still may find the other objects
(although not as well as the “tuned” sensor), the use of multi-
platform collaboration may benefit the overall search, if it can
be properly accounted for at the planning stages.

Recent advances in search evaluation technology allow
for collaboration to be assessed at a planning level. These
advances treat the search as a probabilistic phenomenon with

appropriate joint probabilities used to represent the impact of
collaboration. The use of advanced computers with extended
memory allows this probabilistic representation to be com-
puted over a dynamic search grid that represents the arbitrary
nature of complex search plans. In practice, the search space
becomes a representation of search cells, and each search
trajectory corresponds to a visit sequence amongst these cells.
The collaboration between searchers provides a probabilistic
gain for searching a cell that has been previously visited by
another searcher. With modern computational memory, it is
now feasible to use these cell-based representations of search
performance to evaluate competing representative search plans
at the planning stages. This allows the consideration of non-
traditional search plans and allows for the potential of future
optimal search configurations.

The application of search theory in undersea search oper-
ations for the purpose of finding a number of sought objects
often results in coverage type search paths that are executed
by the search platforms. The coverage search trajectories span
the search space by an exclusive partitioning with assignment
to non-interacting search assets. This is due, in part, to a
tendency to assume uniformity in underlying conditions and
makes no assumptions on search object placement preference
or variation in searcher sensor performance. However, search
performance modeling can degrade when a significant spatial
variability does exists in either placement preference and/or
sensor characteristics, yet uniform conditions are assumed in
the planning. The issue of variability is compounded when
ancillary search object dependencies are considered that are
heterogeneous to spatial characterizations, yet serve to alter
the likelihood of detection events. In such cases, not properly
accounting for intrinsic variability can lead to incorrect search
predictions, which greatly limits the utility of the prediction
in the planning process.

By combining a numerical evaluation capability for collab-
orative search with a framework for vehicle motion planning,
we demonstrate a unique capability for accounting for the
collaboration in the planning stage of a search. This is shown
to provide increased performance over traditional search strate-
gies, and also provides an opportunity to take advantage of
any known nonhomogeneity in the search environment. Such
nonhomogeneity typically takes the form of multiple search
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object classes with searchers specifically tailored to each, or
simple geometric preference of search object location due to
bathymetric features. With the impact of both collaboration
and nonhomogeneity accounted for in the planning process,
the full benefit of any collaborative behavior can be achieved.
This benefit illustrates the potential impact of various levels
of multi-searcher data fusion, allowing search plans that are
tailored to each type of fusion to be employed when that fusion
is available.

In this paper we develop the methodology for assessing
the performance of the search for a mixture of objects by
a set of unmanned sensing vehicles that are each tuned to
best find a particular object. In the next section, we outline
the components of this assessment strategy and provide an
overall framework for the search evaluation process. In section
III, we analyze the consequences of repeated passes in the
evaluation of predicted search performance and the impact
that variability has on performance prediction. In particular,
we present a method for modeling group search performance
which takes into account the additive contributions of the
various search sensors as different vehicles pass over the same
region (although not simultaneously). Finally, we conclude the
paper with a simulation example of a search for a mixture of
two types of randomly-placed objects by two searchers that
are each tuned to optimally perform against one of the types.
This example illustrates the effectiveness of search plans that
incorporate multiple search pass collaboration in this search.
We summarize the example with a discussion of how these
methods may be applied to optimizing the planning for these
complex multi-vehicle search operations.

II. FRAMEWORK FOR SEARCH PLANNING, EVALUATION,
AND ADAPTATION

When planning searches for unmanned vehicles, search
theoretic methods use performance estimates of the search sen-
sors to determine search trajectories and any required overlap
necessary to achieve the desired search effectiveness. However,
existing search evaluation methodologies are based on single
searchers and uniform placement distributions. As such, when
employed for multiple searchers, there is a natural tendency to
perform a prior separation of the search domain into individual
sub-domains for each searcher (the so-called “asset alloca-
tion” problem). Then collaboration between searchers becomes
nothing more than an opportunistic processing strategy, as
opposed to planning to maximize the potential collaborative
search benefit. Furthermore, when searcher collaboration is
ignored in the planning stages, the anticipated performance
can be misleading and lead to less efficient search trajectories
for the autonomous platform in the given period of time.
When trying to utilize scarce resources in a cost-efficient
manner, such inefficiencies should necessarily be examined
in the context of the overall system design.

The overall search planning, updating, evaluation, and re-
planning methodology is outlined in figure 1. In this process,
the search problem is described by the two components on
the left side of the figure. These two components enter into

the search evaluation process inside of the upper feedback
loop, corresponding to the plan optimization process. At each
iteration within the plan optimization process, the vehicle
path is updated and the evaluation is re-processed. Given an
optimal plan, we begin execution of the search. As some
data is returned from early sorties (represented as the execute
partial search block), the priors that describe the search object
parameterization are updated in the update priors process. This
lower feedback process provides the ability to re-plan searches
based on these new priors, leading to a new iteration of the
upper feedback process of plan optimization. This process
repeats until the search effort is completed (or at least until
the last sortie is planned). In a previous paper [4], we describe
the process of updating the priors that is shown in the update
priors block and the search evaluation block. In the next
section, we examine the impact of spatial variability on the
evaluation of search effort as applied by varying asset types.
The execute partial search block is not discussed, since it
merely represents a physical process (albeit one we simulate
in the examples), and the plan optimization function is beyond
the limited scope of this paper, its development is the subject
of ongoing research.

Fig. 1. Unmanned Vehicle Search Planning and Re-planning Process

III. IMPACT OF VARIABILITY ON CELL-BASED SEARCH

PERFORMANCE EVALUATION

To mathematically model the search performance of multi-
ple collaborative searchers in nonhomogeneous environments,
we employ a decomposition of the search process over a
geometric grid. The decomposition considers the separation of
search effectiveness into those calculations that relate directly
to the target of search via a contact model, and those that
relate to the searcher via a search effort model. When properly
decomposed, the combined calculation yields a probability of
successful search: that is, the probability of finding what you
are looking for. This decomposition process holds as long as
the contact model can be factored appropriately; in general,
that implies a model of a single object placement preference,
whereby it is assumed that the object exists somewhere in
the search space. Both the contact model and search effort



model are applied on a common geometric grid whose scale
is fine enough to incorporate necessary details of geometric
variability (in both contact and search effort), yet coarse
enough to include the important search features of the search
object in a single cell. This decomposition provides an ability
to translate the kinematics of each individual searcher into
a sequence of cell pass visits on the search grid. Then all
computations can be efficiently applied on a cell basis. We
note that the modeling framework implies the search paths
are given (and fixed); any adjustment or optimization of the
search paths is performed in an operation that wraps around
the search evaluation process, as shown in figure 1.

A. Generic Search with Overlapping Scans

Cell based evaluation of search performance under the
condition of independent search passes has been well studied
in the literature [3], [5]. The absence of any exploitable
collaborative dependency allows the recursion in detection
likelihood to be based solely upon the single search pass ex-
pected probability of detection. An arbitrary level of assurance
that the specific object of concern is not present within any
given cell can be attained by merely ensuring that enough
search passes are executed over that cell. Let Pηi

(n) denote
the probability that an object in cell i has not been detected
after n independent search passes. The resulting probability
takes the form

Pηi
(n) = (1 − PDi

)n (1)

which follows from the joint occurrence of n independent non-
detection events. Let Pδi

(n) denote the corresponding first
detection probability afforded to pass n whereby δ follows
a geometric distribution with probability at the i-th cell

Pδi
(n) = PDi

(1 − PDi
)n−1. (2)

From these, we let PΣi
(n) denote the aggregate detection

probability after n complete independent search passes with

PΣi
(n) =

n∑
k=1

Pδi
(n) = 1 − (1 − PDi

)n = 1 − Pηi
(n). (3)

Here, we see that the latter form represents the closed form
solution to the finite geometric series presented in the sum-
mation.

These forms can be rendered sequentially to facilitate the
evaluation of alternate search plans. A single recursion in
Pηi

(n) is required for each cell in the search space. Specif-
ically, when search pass detection events are assumed to be
independent, we have the joint non-detection event recursion

Pηi
(n) = (1 − PDi

)Pηi
(n − 1) (4)

with the corresponding incremental pass detection probability

Pδi
(n) = PDi

Pηi
(n − 1) (5)

for first detection occurring on the n-th pass.
Let PC denote a clearance threshold on search effort. When

applied identically to each search cell, PC defines a lower

bound on the multi-pass aggregate probability of detection,
PΣi

(n) to be achieved in that cell by the search plan. Hence,

PΣi
(n) = 1 − (1 − PDi

)n ≥ PC (6)

and the number of search passes over that cell must satisfy

(1 − PDi
)ni ≤ 1 − PC . (7)

Taking the log of both sides of the inequality, rearranging
and acknowledging the negative range of log likelihood values
yields the lower bound

ni ≥ ln(1 − PC)
ln(1 − PDi

)
. (8)

Spatial variability in detection likelihood may cause the
number of search passes necessary over the respective cells to
vary over the search space as well. Depending upon the degree
of variability, imposing this constraint may result in significant
expenditure of resource for only incremental gain and may or
may not be practical. Alternately, the PC threshold can be
applied collectively to the partitioned search space whereby
detection likelihood is marginalized according to placement
probability∑

i

PΣi
(n)PGi

= 1 −
∑

i

(1 − PDi
)niPGi

≥ PC . (9)

This form of clearance calculation weights more heavily those
cells deemed more likely to have object placement occur
within them. Observe that when variability occurs only over
placement preference, then PDi

= PD is constant over the
space. For this case, when a coverage strategy is employed
such that ni = n for all i, then equation (9) reduces to∑

i

(1 − PD)niPGi
= (1 − PD)n ≤ 1 − PC . (10)

and the lower bound of equation (8) applies.
For non-coverage search strategies, spatial variability can

induce a variation in the number of search passes conducted
over the cells spanning the space. The calculation of the
minimum number of cell visits necessary to satisfy equation
(9) may not be apparent nor may the solution be unique.
However, in order for a deviation from a coverage policy
to apply, then the variability in spatial conditions must be
significant enough to cause a reordering in the ideal cell visit
sequence. Let {πk}∞k=1 denote an ideal sequence of cell pass
visits where πk = Pδi

(n)PGi
with k = k(i, n) denoting a

one-to-one mapping from (i × n) → k such that πka
≥ πkb

for ka < kb. If k is ordered according to n, then no cell is
searched again until all cells have been searched to the same
pass level. Otherwise, the ideal cell search pass sequence can
become non-monotonic in n with certain cells given multi-
pass search preference over other cells. Then, for na > nb

given that ka(ia, na) < kb(ib, nb), we have

PDia
(1− PDia

)na−1PGia
≥ PDib

(1− PDib
)nb−1PGib

(11)

To grasp the significance of equation (11), observe that for
the limiting cases when either PDib

= 0 or PGib
= 0, no



search effort is warranted over the cell and any other cell
which is non-zero in these quantities will support an infinite
number of cell visits in lieu of the unproductive search. For
the definitive search, PDia

= 1, only one search pass is
necessary and cell ordering will be based solely on geographic
likelihood. More generally, let na > na − 1 ≥ nb be applied
to set the upper bound na − 1 = nb on the latter. Let

ρba =
PDib

PGib

PDia
PGia

(12)

denote a single pass variability ratio for the two given cells.
Then, from equation (11), the number of pass sequence
reorderings induced by variability in the ideal search pass
sequence is finite for each cell pair combination and is
bounded by

nb ≤
ln(ρba) − ln(1 − PDib

)
ln(1 − PDia

) − ln(1 − PDib
)

(13)

In particular, observe that the limiting occurrence nb = 1
represents a least restrictive condition and for this case

PDia
≤ 1 − ρba. (14)

We see that ideal search pass sequences that deviate from
coverage type search trajectories occur when the joint likeli-
hood reduction due to spatial variability is large relative to the
operating values of detection likelihood. Conversely, the lower
the single pass variability ratio, ρba becomes, the larger will
be the supporting values of detection likelihood that induce
search pass sequence reordering.

This notion of cell ordering applies equally well to one or
more search vehicles. That is, the cell sequence can be exe-
cuted by a single vehicle or, more generally, by a coordination
of search paths for multiple vehicles. The latter constitutes a
pass-level collaboration.

B. Search in the Presence of Ancillary Dependencies

We now expand our notion of variability to include func-
tional dependencies that are non-spatial in nature. In particular,
we apply the concept of an additive utility function to the
recursions of equations (4) and (5) as developed in [6].
These utility functions encapsulate the functional interdepen-
dence between the detection likelihood function and ancillary
random variables, θ, given the disposition of ancillary scan
variables, ϕ. In [6] we highlighted the continuous random
variable describing object orientation relative to the scan
variable sensor reference axis. In this paper we emphasize a
discrete variation in object type and its corresponding impact
on sensor detection performance for one or more sets of
searcher characteristics.

For each cell i, let θ = {mj}Nm
j=1 denote a set of Nm pos-

sible object types occurring within the cell with cell mixture
probability Pi(mj). Let ϕ = {vs}Nv

s=1 denote the non-random
set of Nv possible searcher asset types over which to plan
the search. Finally, let PDi

(mj ; vs) denote the cell detection
likelihood conditioned on object type and given the searcher
type executing the search pass. Here, detection events are

considered to be conditionally independent. Hence, individual
cell recursions of the form of equations (4) and (5) can be
developed. These take the form

Pδi
(mj ; n) = PDi

(mj ; vsn
))Pηi

(mj ; n − 1), (15)

and

Pηi
(mj ; n) = (1 − PDi

(mj ; vsn
))Pηi

(mj ; n − 1), (16)

where vsn
denotes the searcher conducting the n-th search

pass. Marginalizing over object type yields the cell incremental
and non-detection probabilities

Pδi
(n) =

∑
mj∈θ

Pδi
(mj ; n)Pi(mj) (17)

Pηi
(n) =

∑
mj∈θ

Pηi
(mj ; n)Pi(mj) (18)

In [6], the additive utility functions are developed from first
principles. In this paper, we will accept the functional form
and work back backwards to explore the impact of variability.
The cell incremental search pass probability and non-detection
probability recursion that incorporate dependency modeling
via utility functions are shown below.

Pδi
(n) = PDi

(vs)Pηi
(n − 1) + Ui(n) (19)

Pηi
(n) = (1 − PDi

(vs))Pηi
(n − 1) − Ui(n). (20)

Here, PDi
(vs) represents a reference likelihood level about

which variability in detection likelihood is measured. This
reference can be developed globally over the search space or
individually for each cell as was done in [6]. While either
form will produce identical search performance assessments,
prudent selection of the reference can reduce the storage and
computational time requirements of the utility functions.

For our purposes, let PDi
(vs) = PDi

(vs) indicate the cell
referenced mean detection probability and PDi

(vs) = PD(vs)
indicate the global reference where

PDi
(vs) =

∑
mj∈θ

PDi
(mj ; vs)Pi(mj) (21)

PD(vs) =
∑

i

∑
mj∈θ

PDi
(mj ; vs)PGi

(mj)P (mj). (22)

Here P (mj) denotes static object type mixture weights that
apply over the search space and Pi(mj) denotes the cell
conditional mixture weights, which can vary over the space.
With the composite placement preference PGi

developed over
the multiple object types given by

PGi
=

∑
mj∈θ

P (mj)PGi
(mj), (23)

the latter calculates as

Pi(mj) =
P (mj)PGi

(mj)
PGi

. (24)



To generate the functional form of the utility function, we set
equal equations (17) and (19) and combine with (15) to obtain

Ui(n) =
∑

mj∈θ

PDi
(mj ; vsn

)) · Pηi
(mj ;n − 1)Pi(mj)

− PDi
(vs)Pηi

(n − 1). (25)

Naturally, the form of the utility function depends upon
the reference level applied. When the cell referenced mean
detection probability of equation (21) is used, the utility
function takes the form

Ui(n) =
∑

mj∈θ

PDi
(mj ; vsn

))Pi(mj)

× [Pηi
(mj ;n − 1) − Pηi

(n − 1)] (26)

Assuming all non-detection probabilities initialize at Pηi
(0) =

Pηi
(mj ; 0) = 0, the cell utility for the first two passes become

Ui(1) = 0, (27)

and

Ui(2) = −
∑

mj∈θ

PDi
(mj ; vsn

))ΔPDi
(mj ; vsn

)Pi(mj), (28)

respectively, where ΔPDi
(mj ; vsn

) = PDi
(mj ; vsn

) −
PDi

(vs) denotes the perturbation of the object type detection
likelihood from the cell mean value. Subsequent terms follow
the development in [6] and are functions of the perturbation
moments. For this insular reference, all spatial variability in
detection likelihood and placement preference must vanish
before the cell utility generalizes to a form applicable over
the search space. Note, however, that even for this case,
search planning may induce variability at the cell level due
to variability in the assets with which the space is searched.

When the globally referenced mean detection probability of
equation (22) is used, the form of the utility function becomes

Ui(n) =
∑

mj∈θ

P (mj)

×
[
PDi

(mj ; vsn
)PGi

(mj)
PGi

Pηi
(mj ; n − 1)

− PD(mj ; vs)Pηi
(n − 1)

]
(29)

where

PD(mj ; vs) =
∑

i

PDi
(mj ; vs)PGi

(mj) (30)

denotes the grid mean or spatial average of each object type
detection probability. Defining

ρim(vsn
) =

PDi
(mj ; vsn

)PGi
(mj)

PD(mj ; vs)PGi

(31)

as a variability indicator relative to the object specific spatial
averages, equation (29) reduces to

Ui(n) =
∑

mj∈θ

P (mj)PD(mj ; vs)

× [ρim(vsn
)Pηi

(mj ;n − 1) − Pηi
(n − 1)] . (32)

Spatial variability will induce a variation in resultant utility
function. Consequently, the first pass utility function becomes
non-zero and relates the sensor specific search capacity to the
resulting search effort. When object detection probabilities
become constant over the space, variability is induced by
object placement preference with respect to object type and
searcher characteristics. When object placement preference
becomes uniform, utility becomes dependent upon searcher
specialization alone and, as above, cell definition corresponds
solely to search trajectory constraints. For this case, the form
of the utility function is identical to that developed for the cell
reference level.

This kind of functional interdependence between the types
of objects sought and the asset capabilities brought to bear
in order to find objects represents a much higher degree of
collaboration between searchers. That is, exactly how search
pass sequences are executed in an asset-level collaboration can
significantly effect the efficiency of the search.

IV. NUMERICAL EXAMPLES

In this section, results are presented to demonstrate the vari-
ations in expected performance that are induced by variability
within the search space. The results are calculated numerically
over a cell based search grid comprised of 250,000 cells.
The sequential cell-probability aggregation performed by the
algorithm is described in detail in [4] and we present only the
results here. We define the problem as having two search assets
being deployed to find objects of two possible types. The assets
operate with complementary sensor detection capabilities as
given below in table I for the two object types. These values
apply everywhere over the space. Also provided in the table is
the mean detection probability marginalized over object type
which is applied for examples where ancillary dependency on
object is not assumed.

TABLE I
SEARCHER-OBJECT TYPE DETECTION CAPABILITY

Search Asset Object 1 Object 2 Mean Value
1 0.84 0.36 0.60
2 0.36 0.84 0.60

The objects are assumed to be placed in a square search
space according to the spatially variable object density maps
depicted in figure 2. These density maps are uniform in the
vertical dimension and vary according to a Normal shaping
distribution in the horizontal direction. For each object type,
the expected number of objects in the space is one. As such,
these type specific object density maps act as conditional prob-
ability density functions. They are summed and normalized
to produce the composite object placement prior depicted in
figure 3. Hence, a fixed mixture weight of P (mj) = 0.5
applies for either type. Note that while detection probabilities
and mixtures are fixed over the space, the cell conditional
mixture weights Pi(mj) are not, as per equation 24.

The two assets conduct search according to one of the two
search paradigms depicted below in figure 4. On the left, the



Object Type 1 Object Type 2

Fig. 2. Object Placement Densities

Fig. 3. Composite Object Placement Prior

square search region is divided horizontally into two halves
over which vertical ladder searches are conducted. On the
right, both assets are deployed over the entire search region
and their search paths overlap. To facilitate examination of
search pass sequencing effects, the starting point of the search
is set to occur at a location where the placement prior drops
off to one third of its value at its most likely locations. From
this point, a partial search of the space is conducted in the
direction of the most likely positions followed by a complete
sweep of the space.

Split Region Search Paths Overlap Search Paths

Fig. 4. Search Path Definitions

We start with the case where no ancillary dependencies are
assumed and both search assets operate with the mean detec-
tion probability PD = 0.6. In figure 5, clearance probability
for the left half search is presented as a function of search time
for the split region search plan. This is shown as the upper
curve in the figure. Also shown as the lower curve in the figure
is the result obtained by employing a reciprocal trajectory for
the search. For this search trajectory, the positions of the search
asset are reversed as a function of time. Any difference in
the expediency of the pass sequence between the two search

paths will be indicated by a gap between the curves. As the
two paths result in precisely the same set coverage, initial and
final performance results are identical. As shown in the figure,
this difference can be significant.

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

Time (hrs)

C
le

ar
an

ce
 P

ro
ba

bi
lit

y

Fig. 5. Impact of Spatial Variability on a Candidate Left Region Search Path
and its Reciprocal Trajectory

Next, we compare the effectiveness of the two search
strategies for this case of no ancillary dependency. The result
is depicted in figure 6. For the split region strategy, clearance
probability is calculated individually and summed over the two
search regions (shown as the blue curve). For the overlapping
search plan, results are calculated and aggregated simulta-
neously per the multi-platform search evaluation algorithm
(shown as the black curve). As variability is restricted to
the object neutral placement prior and pass sequencing is
reasonably aligned for the two plans, there is hardly any
noticeable differences in the resulting performance. The slight
difference that does occur is due to the kinematic requirement
for the search platform to turn around as part of the split region
search policy. This causes a slight delay in execution. For this
case, it does not matter which strategy is employed as long as
a proper pass sequence is executed.
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Fig. 6. Search Performance Comparison of Split and Overlap Search Paths

The next two figures concern the inclusion of ancillary
dependency as given in the variability exhibited in table I.
First we examine the performance for the left region using
the split region strategy. Again, results for the search path and
its reciprocal trajectory are provided. Clearly, from figure 2,
object type 1 is much more likely to occur in this region and
one should anticipate good performance when the asset type
is matched to the object type. This is shown to occur in figure
7 as the upper red curve corresponding to the selection of
asset type 1 as the searcher. The gap between the red curves



highlight the variation in expediency with respect to the search
pass sequence. The blue curves denote a selection of asset type
2 as the searcher.
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Fig. 7. Impact of Combined Variability on a Candidate Search Path and its
Reciprocal Path

A comparison of the overlapping search path trajectories is
provided in figure 8. Three performance curves are illustrated.
The central black curve corresponds to the case of no ancillary
dependence (i.e., PD = 0.6) assumed in the model. It is
identical to that shown in figure 6. The red and blue curves
depict results for the combined variability case for the same
asset selection combination as above. Two interesting observa-
tions can be made. First, improved performance over the mean
value performance is achieved when ancillary dependence
is accounted for in the performance assessment regardless
of object-asset search pass coordination. Secondly, exactly
which search path exhibits the better performance when this
dependency is accounted for depends upon time constraints
and clearance level specified. Initially, asset type 1 starting
on the left dominates with its matched detection priority until
well past the overlap. Then, the more thorough matched-search
presented by starting asset 2 on the left compensates for the
lack of initial timeliness.
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Fig. 8. Search Performance for Overlapping Search Paths

Note that nearly identical performance is achieved for these
search trajectories if asset type 1 is selected as the left region
searcher using the split region plan and asset type 2 is selected
as the left starting searcher in the overlap plan. Both present
reasonable search plans provided that the match between
region and asset type is exploited. Blind asset allocation can
produce the poor results indicated by the blue curves of
figure 7. Ultimately, ideal search plans are not unique and are
subject to the specific criteria being applied and the knowledge
brought to bear in developing the plans.

V. CONCLUSION

We have presented a methodology and mathematical mod-
eling approach to planning searches for multiple unmanned
vehicles. The approach developed is applicable to vehicles
searching for objects whose expected location is given by
a spatially-varying likelihood function. Furthermore, the ap-
proach accounts for collaboration between the searchers, prop-
erly accounting for the expected benefit of any planned fusion
strategy between searchers. The procedures developed readily
apply to planning search paths based on area coverage asset
allocations as well as to coordinated group searches.

This approach was applied to a problem of multiple un-
manned vehicles searching for objects whose location is un-
known, but are expected to appear according to a known spatial
likelihood pattern. Furthermore, mixtures of various different
object types are allowed, each with a potentially unique
likelihood pattern. In a simulation setting, we illustrated how
the benefits of a group of different searchers, each tailored
to a specific object from the mixture, can be improved via
their collaborative behavior, as opposed to performing a simple
non-collaborative sub-division of the search region. In this
manner, we have illustrated a capability to interpret spatial
variability in placement, sensor/object specificity, and multi-
searcher collaboration.

The example presented in this paper represents a single
realization of a general tool set for evaluating search of
multiple collaborating vehicles in the context of placement
uncertainty. Future extensions of this work include the addition
of expected errors (such as navigational uncertainty) and the
use of these methods in a search plan optimization setting.
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